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the presence of chronic disease and physical exhaustion index. Initially, Partial Least Square (PLS), which is the presence of chronic disease and physical exhaustion index. Initially, Partial Least Square (PLS), which is 
commonly used in prognostic modelling, is applied to the dataset to identify significant forecasters of anae-commonly used in prognostic modelling, is applied to the dataset to identify significant forecasters of anae-
mia. PLS regression is then used to develop a predictive model capable of accurately diagnosing anaemia mia. PLS regression is then used to develop a predictive model capable of accurately diagnosing anaemia 
founded on these features. Subsequently, Support Vector Machines (SVM), a powerful supervised learning founded on these features. Subsequently, Support Vector Machines (SVM), a powerful supervised learning 
algorithm, are employed to classify anaemia cases. The SVMs are trained on the same dataset, and their act is algorithm, are employed to classify anaemia cases. The SVMs are trained on the same dataset, and their act is 
evaluated in terms of precision, sensitivity, and specificity. The comparative analysis highlights the strengths evaluated in terms of precision, sensitivity, and specificity. The comparative analysis highlights the strengths 
and weaknesses of both PLS models and SVMs in diagnosing anaemia. While PLS models demonstrate strong and weaknesses of both PLS models and SVMs in diagnosing anaemia. While PLS models demonstrate strong 
predictive capabilities and interpretability, the variables in the study can be ranked by importance as follows: predictive capabilities and interpretability, the variables in the study can be ranked by importance as follows: 
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 1 Introduction
Regression analysis uses two prominent methods to predict the connection between the dependent variable 
and one or more independent variables: Partial Least Squares and Support Vector Machine regression. These 
procedures remain frequently used in many different domains, such as chemometrics, machine learning, and 
statistics. They are predicated on distinct ideas and presumptions even if they have the same goal.[4][5][8]
SVM regression is a supervised learning algorithm that aims to minimize the difference between expected and 
actual values by finding the optimal hyperplane in a high-dimensional space for grouping data points into 
discrete categories. The fundamental idea behind this method is to calculate a hyperplane that maximizes the 
margin between support vectors, or the data points nearest to the decision boundary. Since SVM regression 
does not rely on distributional assumptions like standard regression methods do, it is a good strategy for 
controlling nonlinear relationships between variables.[3]
On the other hand, PLSR is a statistical way that uses the identification of latent variables, or components, to 
optimize the variance in both the dependent variable and the predictors in order to describe the association 
between the dependent variable and some independent variables. The existence of a linear association between 
the predictor and responder variables is a fundamental tenet of PLS. By removing orthogonal components, it 
effectively manages multicollinearity among predictors.[1][3][12]
SVM regression and PLS differ primarily in their underlying theories and approaches to optimization. PLS 
seeks to optimize the covariance between predictors and the response variable, whereas SVM regression 
places more emphasis on optimizing the margin between support vectors. In addition, SVM regression works 
especially well in high-dimensional spaces and is resistant to overfitting, while PLS regression is easier to 
understand and better suited for scenarios in which there are more predictors than observations.[5][7]
To compare their performance, consider a simulation where both SVM regression and PLS are applied to a 
dataset with complex nonlinear relationships. SVM regression might deliver superior predictive accuracy, 
particularly in high-dimensional contexts, while PLS could provide deeper insights into the data’s underlying 
structure, making it a better choice when interpretability is crucial.[9]
Regarding their advantages, SVM regression is highly capable of handling high-dimensional data and is 
resilient to overfitting. In contrast, PLS offers greater interpretability and effectively manages multicollinearity. 
However, SVM regression can be computationally demanding, especially with large datasets, and selecting the 
appropriate kernel function can be challenging.[6]
PLS’s performance is highly responsive to the number of components chosen, and it runs the danger of 
overfitting when there are more predictors than explanations.[6]
2 The goals of this research
This study aims to compare the effectiveness of partial least squares and support vector machines, two machine 
learning techniques, in diagnosing anaemia.
3 Methodology

 Partial Least Squares 3.1
 PLS uses latent variables to maximize the association between responses and predictions. In the late 1960s,
World devised it, first for econometrics. PLSR is a widely used multivariate modelling technique for Near-

 Infrared spectral data when creating calibrations. It combines MLR and Principal Component Analysis. The
 model considers the spectrum data represented by the variable matrix X as well as the properties of interest
 represented by the variable matrix Y. The nutrients in sugarcane leaves are estimated by the latent variables that
 come from the PLSR model. Next, it builds a regression model to predict response variables simultaneously,
 Y. the capacity to distinguish between data and noise in the system being studied. This information feature
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 compression yields more practically significant results by condensing the explanatory variable X and
 accounting for its association with the predicted variable Y. Concurrently derives the first latent variable, u1,
 from the variable set Y, guaranteeing maximum correlation between t

1
 and u

1
, and extracts the first latent

 variable, t
1
, from the variable set X, capturing maximum variation information. Regression equations with

 Y and t
1
 and with X and t1 are then established. The algorithm extracts the second latent variable, t

2
, from

 the residual information interpreted by t
1
 of X, and u

2
 from the residual information interpreted by t

1
 of

 Y, until it reaches the appropriate precision, or iterates until the accuracy requirements are met. The PLSR
  model integrates principal components analysis, canonical correlation analysis, and LRM within the modelling
process, enhancing its effectiveness in predictive modelling  and analysis of NIR spectral data.[9]

3.2 Mathematical applied of PLS
 A brief overview of PLS mathematics is given in this section. PLS is essentially a dimension reduction strategy
 combined with a regression model. In contrast to comparable methods like PCR, the latent components
 derived by PLS are selected while considering the regression’s dependent variable. Let’s say we wish to use

 p continuous predictor variables  to predict q continuous dependent variables

 .  Represents the presented

 data sample with n observations, which stand for the ith observation of the dependent
 variable and the predictor variable, correspondingly. The prime represents un-centred fundamental data, i.e.
Their elimination denotes the sample average’s subtraction, i.e.[12]

 The  of matrix Z. Likewise, 

containing the 

When , the LRM, which is often represented as OLS, cannot be applied 

  (which can have a maximum rank ) is singular. In contrast, PLS may be applied

also to cases in which . PLS regression is based on the basic latent component decomposition:

                         (1)

                         (2)

Where  is a matrix giving the latent components for the n observations,  and 

   are matrices of coefficients and   and  are matrices of random errors. Note

that if the given matrices T, P and Q satisfy Equations (1) and (2), then so do  
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  and     for any non-singular

  matrix M. Thus, the space spanned by the columns of T is more important than the columns
of T themselves.

 PLS as well as principal component regression and reduced rank regression can all be seen as methods to

construct a matrix of latent components T as a linear transformation of :

 Where  matrix of weights. In the remainder of the article, the columns of W and T are denoted as

  and ,

 respectively, for . For a fixed matrix W, the random variables obtained

by forming the corresponding linear transformations  are denoted as 

:

 The latent components are then used for prediction in place of the original variables: once T is constructed,

 is obtained as the least squares solution of Equation (1):

Finally, the matrix B of regression coefficients for the model  is given as

The fitted response matrix may be written as

If we have a new (uncentered) raw observation , the prediction  of the response is given by

           (3)
 PLS outputs the matrices W, T, P, and Q in addition to the matrix of regression coefficients B; consequently, PLS
 regression refers to the simultaneous performance of dimension reduction and regression in PLS. The columns
 of T are frequently referred to as “latent variables” or “scores” in the PLS literature. Since the columns of T in
 PLS are not observations of underlying random variables, but rather the outcome of a matrix decomposition,
 we prefer the term “latent components” for this study. ‘Z-loadings’ and ‘Y-loadings’ are common designations
for P and Q, respectively.[11][12]

 The response Y should be considered while building the components T, according to the fundamental principle
 of the PLS approach. More specifically, as described in the sections on “Univariate response” and “Multivariate
 response,” the components are defined so as to have significant covariance with the response. Because of this,
 PLS is referred to as a supervised approach as opposed to other methods like principal component analysis
 (PCA), which does not use the response to create new components. This characteristic explains why PLS
 typically outperforms PCA in prediction tasks. There are four levels at which the different PLS regression

 approaches can be characterized: The W matrix itself, the result matrix of the coefficients of regression ,
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 the objective function that the W matrix maximizes, and the procedure used to compute W. The connections
 between these four distinct levels are as follows:

 	 Multiple objective functions can be maximized by the same W matrix. However, only one
W-Matrix (and its opposite–W) often satisfies a given objective function.

 	The W matrix may be produced via multiple algorithms.
 	 There is just one possible matrix of regression coefficients for a given W matrix. It is possible

 for two distinct matrices, W and , to provide identical regression coefficients, provided

 that an invertible matrix  exists, so that . Keep in

 mind that while W and  produce the same forecast, they may not always meet the same goal
function.

3.3 Support Vector Machine Regression
 SVM is commonly used for regression and classification in machine learning. Vapnik introduced
 the SVM, which is a useful tool for pattern recognition and classification problems. Regression problems can
 be solved using SVMs by using a different loss function. SVM has drawn interest and seen widespread use
 as a result of its benefits and exceptional generalization performance over alternative approaches. Because
 SVM contains the structural risk minimization principle—which has been demonstrated to be superior to the
 conventional empirical risk minimization principle—it can provide global models that are frequently unique,
 resulting in excellent performance. Moreover, sparse solutions can be obtained and both linear and nonlinear
 regression can be carried out because of their particular formulation. However, because it necessitates the
 solution of several non-linear equations, determining the final SVM model can be quite computationally
challenging.[2][11]
3.4 Mathematical Model of SVMR

 This is a brief synopsis of SVM theory for regression. The fundamental idea behind SVMR is to solve a linear
 regression issue in higher dimensional feature space by mapping the novel data (z) nonlinearly. To learn the

 input-output connection from the data set , we first regress it using a

 linear function. Here,  represents the input vector to the SVR model,   is the output value, and p is
the total number of data patterns. The following is an expression for the SVMR model:

         (4)

 where the high dimensional kernel-induced feature space is represented by the function . The
 parameters w and b, which represent a support vector weight vector and a bias term, are determined by
minimizing the regularized risk function as follows:

           (5)

 where  represents a cost function measuring the empirical risk.  Denotes the regularization

term.  is the so-called -insensitive loss function, which is defined as

       (6)
 In Equation (6), if the predicting error is less than ε, the loss equals 0; if not, the loss equals a value greater
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than ε.

 The deviation  from the edges of the ε-insensitive zone can be calculated using two

 positive slack variables,  and , for . Stated differently,
 they express the separation between the real values and the corresponding ε-insensitive zone boundary values.
Eq. (5) is converted into the following constrained version by utilizing slack variables:

   (7)

subject to 

 By using Lagrangian multipliers and Karush−Kuhn−Tucker conditions to Eq. (7), it thus yields the following
dual Lagrangian form

       (8)

Subject to the constraints:

                     (9)

 The LP in Eq. (9) satisfies the equality . The LP,  and , are
calculated and an optimal desired weight vector of the regression hyperplane is obtained by

     
Therefore, the SVM-based regression function’s generic form can be expressed as

      (10)

 In Eq. (10),  the function of kernel. The idea of the function of the kernel

 has been introduced to decrease the
computational demand. [7][10]

4 Result and Discussion
 The Children’s Hospital in the Sulaymaniyah Governorate provided the study’s data, which were gathered from
 a total of 220 patients. Test and training sets of data were separated apart. Age, education level, gestational age,
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 presence of chronic disease, physical exhaustion index, blood pressure, white blood cell count, haemoglobin
 level in the blood, hematocrit test, and iron storage test were the explanatory variables that were investigated,
while the haemoglobin ratio was the response variable. Separate the dataset into training and testing sets.

4-1 PLS Algorithm steps
 Partial Least Squares regression is useful when you have many predictor variables, and these predictors are
highly collinear.

 Z dimension: 219 10  Data: 

Y dimension: 219 1  

Fit method: kernel pls

Number of components considered: 10

 First: PLS regression is a robust multivariate analysis technique used to model the relationships between
 predictor variables and response variables. It is especially beneficial when there are more predictor variables
than observations or when the predictors are highly collinear.

VALIDATION: RMSEP
Table (1): Represent Validation: RMSEP

Cross-validation using 10 random segments

Measures  (Intercept)
 Comp

1

 Comp

2

Comp

 3

 Comp

4

 Comp

5

 Comp

6

 Comp

7

Comp

 8

Comp

 9

Comp

10

 Cross
Validation 1.54 0.8904 0.6055 0.4967 0.5026 0.5096 0.508 0.507 0.5078 0.5062 0.5063
 Adj Cross
Validation 1.54 0.7839 0.5855 0.4938 0.4995 0.5056 0.5041 0.5031 0.504 0.5025 0.5026

 The test RMSE computed using k-fold cross-validation is displayed in the above table, which makes the
following observations:

 	With only the intercept term in the model, the test RMSE is 1.54.
 	Adding the first PLS component reduces the test RMSE to 0.8904.

 	Including the second PLS component further reduces the test RMSE to 0.6055.
 	 We observe that adding more PLS components increases test RMSE. Therefore, it seems

optimal to use only three  PLS components in the final model.
TRAINING: % variance explained

Table (2): Represent Training: % variance explained
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 Training: % variance explained

Measures
 Comp

1
 Comp

2
 Comp

3
 Comp

4
 Comp

5
 Comp

6
 Comp

7
 Comp

8
 Comp

9
Comp10

X 10.26 76.35 95.89 98.84 99.18 99.5 99.59 99.8 99.88 100
y 87.71 89.19 91.36 91.41 91.54 91.59 91.61 91.62 91.62 91.62

 The percentage of the response variable’s variance that the PLS components account for is shown in this
table. In particular:

 	 Of the variation in the response variable, 10.26% can be explained by the first PLS
component alone.

 	Upon adding the second PLS component, the explained variation rises to 76.35%.
   

Table (3): Measures of Criteria

Model

Measure Criteria

MSE R-Squared

PLS 0.196758 0.916242

 The Mean Squared Error (MSE) value of 0.196758 represents the average squared difference between the actual
 and predicted values. Whether this error is considered high or low depends on the data’s scale, but generally,
an MSE closer to 0 is preferred for practical applications.

 The R² value of 91.62% indicates that about 91.62% of the variance in the response variable can be explained
by the explanatory variables in the model. This high R² value suggests a strong fit of the model.
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 Figure (1) Represent root mean square error of prediction.

 The statistics used to measure a predictive model’s accuracy is the Root Mean Square Error of Prediction.
 It calculates the discrepancy between values that are observed and those that the model predicts. When
 evaluating model performance during cross-validation or when using a test dataset, RMSEP is quite helpful.
 The aforementioned figure suggests a good fit because it shows how well the model’s predictions match the
actual values.

Figure (2) Represent the PLS scores.

 Ten per cent of the variance in the predictor variables is explained by Component 1 (Comp1). This
component’s contribution is minimal, yet it might indicate some underlying structure in the data. 

 Sixty-six per cent of the variance in the predictor variables is explained by Component 2 (Comp2). The
 most significant correlations between the predictors and the response variable are probably captured by this
component, which is also much more significant.
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Figure (3) Represent the PLS loading
Table (4): Represent the ANOVA table

Sources
 Degree of
Freedom

Sum Square
 Mean Square

Error
F-Value P-Value

Z
1

1 0.03 0.03 0.136 0.7123
Z

2
1 4.68 4.68 22.601 3.72E-06***

Z
3

1 29.60 29.6 142.868 < 2e-16***
Z

4
1 1.92 1.92 9.292 0.0026**

Z
5

1 18.21 18.21 87.918 < 2e-16***
Z

6
1 14.73 14.73 71.086 5.69E-15***

Z
7

1 69.65 69.65 336.229 < 2e-16***
Z

8
1 95.94 95.94 463.112 < 2e-16***

Z
9

1 234.53 234.53 1132.113 < 2e-16***
Z

10
1 2.07 2.07 9.997 0.0018**

Residual 208 43.09 0.21
Total 218

 Since Z
1
 is relatively high, there isn’t much evidence to refute the null hypothesis. In particular, under typical

 significance thresholds like 0.05, the variable Z
1
 (p-value of 0.7123 > 0.05) is not statistically significant. This

 suggests that, in comparison to the noise in the data, X1 does not substantially contribute to explaining
 the variance in the dependent variable. On the other hand, because their p-values are all less than 0.05, the
remaining variables are all statistically significant.

Figure (4) Represent the importance variable in PLS
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From the above diagram, the influencing variables can be arranged as follows:
Z

4
: Presence of Chronic Disease

Z
5
: Body mass Index in kg/m2

Z
6
: Blood Pressure

Z
2
: Level of Education

Z
10

: S.Ferritin
Z

3
: Gestational Age

Z
7
: WBC

Z
8
: MCH [haemoglobin level in blood]

Z
9
: HCT [Hematocrit Test ]

 Second: SVR is a regression problem-solving system that builds upon Support Vector Machine (SVM).
 Though SVR for classification relies on the same fundamental ideas as SVM, it adds some adjustments to
make continuous value prediction easier.

Table (5): Comparison between different SVM-Kernel

SVR-Kernel Number of SVR R2 MSE Gamma Epsilon

Polynomial
134 0.8273 0.3115 0.1 0.1

Radial
117

0.7877 0.3830
0.1 0.1

Polynomial Kernel Interpretation

 	 A good fit for the data is indicated by the model’s coefficient of 0.8273, which shows that it
accounts for 82.73% of the variance in the dependent variable.

 	 The average squared error of the model’s predictions is equal to 0.3115. Better model
performance is shown by a reduced mean squared error (MSE).

Radial Base Kernel Interpretation

 	 0.7877: This indicates that, while marginally less than the previous number, the model still
accounts for 78.77% of the variance, indicating a satisfactory fit.

 	 0.3830: This MSE is greater than 0.3115, meaning that, on average, the model’s predictions
are less accurate than those of the model with an MSE of 0.3115.

 In conclusion, a model with an R2 of 0.8273 and an MSE of 0.3115 outperforms a model with an R2 of 0.7877
and an MSE of 0.3830 in terms of
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 Figure (5) Represent the SVR predictions vs. actual
 In summary, information on the SVR model’s performance for each type of kernel may be obtained by looking
 at the scatter around the diagonal line. While polynomial kernels are excellent at modelling  polynomial
relationships, they may overfit if not properly adjusted. In contrast, radial kernels are good at handling non-
linearities.

 Third: Comparison between PLS and SVR Both methods have their strengths and can be powerful tools in
 regression analysis, dependent on the nature of the data and the specific requirements of the analysis. The
result is as follows:

Table (6): Comparison between PLS and SVR

Model MSE R2

Partial Least Square (PLS) 0.21
0.9162

Support Vector Regression Machine (SVR)
0.3115 0.8273

 In this case, the Partial Least Squares (PLS) model outperforms the Support Vector Regression (SVR)

 model based on the MSE and R-Square values. With a reduced MSE and a greater root MSE, the PLS

model exhibits superior prediction accuracy and explanatory power.

4 Conclusions and Recommendations

4-1 Conclusions

This is how the conclusion is paraphrased: 

 1. Investigating different kernel functions can increase the accuracy of classification; in biomedical

 contexts, radial basis functions frequently produce robust findings. Other kernel functions to
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consider are linear, polynomial, and radial. 

 2. Partial Least Squares (PLS) is a useful technique for reducing dimensionality while maintaining

important data required for the prediction of anaemia. 

 3.  The PLS model performs better than the Support Vector Regression (SVR) model, as indicated

 by its Mean Squared Error (MSE) and R-Square values. A lower MSE and a larger R-Square indicate

better prediction accuracy and explanatory power. 

 4. PLS provides important insights into the most important variables for predicting anaemia, such as

 the presence of chronic disease, body mass index (BMI), blood pressure, education level, S. ferritin,

gestational age, WBC, MCH, and HCT.

4-2 Recommendations

 To further improve the diagnostic process and model performance, consider the following

recommendations:

1 . To improve diagnostic performance, look into ensemble approaches that integrate

PLS-SVM with additional machine-learning techniques.

2 . Collaborate with medical experts to include the diagnostic model in clinical

procedures, guaranteeing its applicability and influence in actual environments.

3 . Provide procedures for the model’s continual monitoring and updating to guarantee

that its correctness is preserved when fresh patient data becomes available.

References

 [1]Ahmed, D. H., Mohamad, S. H., & Karim, R. H. R. (2023). Using Single Exponential Smoothing

 Model and Grey Model to Forecast Corn Production in Iraq during the period (2022-2030). University

 of Kirkuk Journal For Administrative and Economic Science, 13(3).

 [2] Cortes, C., & Vapnik, V. (1995). “Support-Vector Networks.” Machine Learning, 20(3), 273-297.

This is the foundational paper on SVMs by Cortes and Vapnik.

 [3] Hussein, M. M. F. (2024). Forecasting Price of Crude Oil Using the Weight Markov Chain (WMC)

 and ARIMA Model Techniques. Al-Ghary Journal of Economic and Administrative Sciences, 20(2),

 42-64.

 [4] Hussein, M. M. F., Saeed, A. A., & Mohamad, S. H. (2023). Comparison Markov Chain and Neural

 Network Models for forecasting Population growth data in Iraq. University of Kirkuk Journal For

 Administrative and Economic Science, 13(4).

[5] Hussein, M. M. F. (2023). Predicting Number of People Living with Chronic HCV Using Gray-

 Weighted Markov Chain Model (GW-MCM). University of Kirkuk Journal For Administrative and

 Economic Science, 13(4).

[6] Hamad, A. P. D. A. S., Faqe, A. P. D. M. M., & Mohamad, A. L. S. H. (2023). Forecasting Life-



گۆڤاری کوردستانیی بۆ لێکۆڵیینەوەی ستراتییجیی

170

 Expectancy in Iraq During the Period (2022-2035) Using Fuzzy Markov Chain. University of Fallujah,

 Journal of Business Economics for Applied Research, 5(3), 347-372.

 [7] Liu, Y., & Li, Q. (2008). “A New Approach to Simultaneous Feature Selection and Support Vector

 Machine Classification.” In: 2008 IEEE International Conference on Data Mining. This paper discusses

integrating feature selection with SVM classification, relevant for combining with PLS.

 [8] Omer, A., Faraj, S. M., & Mohamad, S. H. (2023). An application of two classification methods:

 hierarchical clustering and factor analysis to the plays PUBG. Iraqi Journal of Statistical Sciences, 20(1),

 25-42.

 [9] Rosipal, R., & Trejo, L.J. (2001). “Kernel Partial Least Squares Regression in Reproducing Kernel

 Hilbert Space.” Journal of Machine Learning Research, 2, 97-123. This paper explores the combination

of PLS and SVM methodologies.

 [10] Taha, A. A., & Mohammad, M. A. (2023). Correlated multistate model for the progression of

 chronic kidney disease with detecting risk factors effect. Revista Latinoamericana de Hipertension,

18(6).

 [11] Vapnik, V. (1999). “An Overview of Statistical Learning Theory.” IEEE Transactions on Neural

 Networks, 10(5), 988-999. This paper provides a broad overview of statistical learning theory, including

SVMs.

 [12] Wegelin, J.A. (2000). “A Survey of Partial Least Squares (PLS) Methods, with Emphasis on the

 Two-Block Case.” Technical Report No. 371, University of Washington, Seattle. This survey paper

covers various PLS methods, with a focus on the two-block case.

Appendix (A): Partial Least Square

install.packages(“pls”)

install.packages(“caret”)

library(pls)

library(caret)

# Dummy data

data =read.csv(“C:/hp1.csv”)

data

# Fit the PLS model

pls_model <- plsr(y ~ z1+z2+z3+z4+z5+z6+z7+z8+z9+z10, data = data, validation = “CV”)

# Model summary

summary(pls_model)
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# Calculate the MSE

predicted <- predict(pls_model, ncomp = pls_model$ncomp)

mse <- mean((data$y - predicted)^2)

print(paste(“Mean Squared Error (MSE):”, mse))

# Calculate R-Squared

r_squared <- 1 - sum((data$y - predicted)^2) / sum((data$y - mean(data$y))^2)

print(paste(“R-Squared:”, r_squared))

# Variable importance

vip <- vip(pls_model)

print(vip)

# Goodness of fit plot

plot(RMSEP(pls_model), main = “Root Mean Squared Error of Prediction (RMSEP)”)

# Scores plot

plot(pls_model, plottype = “scores”, main = “PLS Scores”)

# Loadings plot

plot(pls_model, plottype = “loadings”, main = “PLS Loadings”)

# Variable importance plot

barplot(vip, main = “Variable Importance in Projection (vip)”, col = “blue”)

anova_model <- aov(y ~ z1+z2+z3+z4+z5+z6+z7+z8+z9+z10, data = data)

summary(anova_model)

Appendix (B): Support Vector Machines (SVM)

 Support vector regression (RBF kernel, polynomial kernel,Y:response,Z
1
:Independent,Z

2
:independent

,Z
3
:independent, MSE,R-Square ,variables significance, figure) use r programming

install.packages(“e1071”)

install.packages(“caret”)

install.packages(“ggplot2”)

library(e1071)

library(caret)

library(ggplot2)
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data <- read.csv(“C:/hp1.csv”)

data

# Split data into training and testing sets

set.seed(123)

trainIndex <- createDataPartition(data$y, p = 0.8, list = FALSE)

trainIndex

trainData <- data[trainIndex,]

trainData

testData <- data[-trainIndex,]

testData

# Train SVR with RBF kernel

svr_rbf <- svm(y ~ ., data = trainData, kernel = “radial”)

summary(svr_rbf)

# Predict on test data

predictions_rbf <- predict(svr_rbf, newdata = testData)

# Calculate MSE and R-squared for RBF kernel

mse_rbf <- mean((predictions_rbf - testData$y)^2)

rsq_rbf <- 1 - sum((predictions_rbf - testData$y)^2) / sum((mean(trainData$y) - testData$y)^2)

# Train SVR with polynomial kernel

svr_poly <- svm(y ~ ., data = trainData, kernel = “polynomial”)

summary(svr_poly)

# Predict on test data

predictions_poly <- predict(svr_poly, newdata = testData)

# Calculate MSE and R-squared for polynomial kernel

mse_poly <- mean((predictions_poly - testData$y)^2)

rsq_poly <- 1 - sum((predictions_poly - testData$y)^2) / sum((mean(trainData$y) - testData$y)^2)

# Print results

cat(“RBF Kernel:\n”)

cat(“MSE:”, mse_rbf, “\n”)

cat(“R-squared:”, rsq_rbf, “\n\n”)

cat(“Polynomial Kernel:\n”)

cat(“MSE:”, mse_poly, “\n”)

cat(“R-squared:”, rsq_poly, “\n”)

# Combine predictions and actual values for plotting

plot_data_rbf <- data.frame(Actual = testData$y, Predicted = predictions_rbf, Kernel = “RBF”)
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 plot_data_poly <- data.frame(Actual = testData$y, Predicted = predictions_poly, Kernel =

“Polynomial”)

plot_data <- rbind(plot_data_rbf, plot_data_poly)

# Plot actual vs predicted values

ggplot(plot_data, aes(z = Actual, y = Predicted, color = Kernel)) +

  geom_point() +

  geom_abline(slope = 1, intercept = 0, linetype = “dashed”) +

  theme_minimal() +

  labs(title = “SVR Predictions vs Actual”,

       z = “Actual Values”,

       y = “Predicted Values”)


